This is an HTML version of an attachment to the Freedom of Information request 'TAB documents from the list (neurological)'.


FOI 24/25-0223 
Research paper 
Document 5
OFFICIAL
For Internal Use Only 
Functional electrical stimulation after spinal 
cord injury 
The content of this document is OFFICIAL. 
Please note: 
The research and literature reviews collated by our TAB Research Team are not to be shared 
external to the Branch. These are for internal TAB use only and are intended to assist our 
advisors with their reasonable and necessary decision-making. 
Delegates have access to a wide variety of comprehensive guidance material. If Delegates 
require further information on access or planning matters, they are to call the TAPS line for 
advice. 
The Research Team are unable to ensure that the information listed below provides an 
accurate & up-to-date snapshot of these matters 
Research question: What is the efficacy of intensive lower limb Functional 
Electrostimulation Therapy (FES) for individuals with Spinal cord Injury OR C2 level 
Tetraplegia? 
Date: 11/01/2023 
Requestor: s47F - personal privacy 
Endorsed by: Sinead E
 
s47F - persona  
Researcher: Aaron Hs47F - personal priva and Stephanie Ps47F - personal   
privacy
Cleared by: Aaron Hs47F - personal priva 
FES after SCI 
Page 1 of 8 
OFFICIAL 
Page 1 of 8


FOI 24/25-0223 
Research paper 
Document 5
OFFICIAL 
For Internal Use Only 
1.  Contents 
Functional electrical stimulation after spinal cord injury ............................................................. 1 
1. 
Contents ....................................................................................................................... 2 
2. 
Summary ...................................................................................................................... 2 
3. 
Functional Electrical Stimulation ................................................................................... 3 
3.1  FES Cycle .................................................................................................................. 3 
4. 
Guidelines ..................................................................................................................... 3 
5. 
Efficacy of FES after spinal cord injury ......................................................................... 4 
6. 
Risks ............................................................................................................................. 5 
7. 
References ................................................................................................................... 6 
 
2. Summary 
This research paper focussed specifically on functional electrical stimulation (FES), a 
therapeutic treatment used in rehabilitation for people with spinal cord injury (SCI). This paper 
focuses on FED used as an exercise or therapeutic modality to improve lower limb health and 
function. Most research focusses on FES cycle training. This paper wil  not discuss FES used 
for improving upper limb function or FES used as a neuroprosthesis to aid standing and 
walking. 
There is consistent evidence that FES training can improve muscle health, power output and 
aerobic fitness and spasticity in people with SCI. Despite the consistency, there are some 
quality issues in the literature which downgrade the reliability of this evidence. There is 
inconsistent evidence for other outcomes such as bone health, cardiovascular and metabolic 
factors, fat mass, muscle strength, subjective well-being and functional and neurological 
outcomes. 
Effects are present for people with incomplete and complete SCI, though effects appear 
greater for people with complete SCI. There is limited evidence for older people (over 65 
years) and for people with high cervical lesions and so evidence may not generalise for this 
group. 
Some studies recommend dosage though specific recommendations are less reliable. Typical 
frequency of FES training for clinical studies is 2 – 3 times per week. 
The only clinical guideline available for this research concerned only FES for upper limb 
exercise. A clinical practice guideline focussing on FES cycle training is currently in 
development though the publication date is unknown. 
 
FES after SCI 
Page 2 of 8  
OFFICIAL 
Page 2 of 8


FOI 24/25-0223 
Research paper 
Document 5
OFFICIAL 
For Internal Use Only 
3.  Functional Electrical Stimulation 
FES is a type of neuromuscular electrical stimulation (NMES). FES is distinguished from other 
types of NMES (for example, transcutaneous electrical nerve stimulation (TENS)) as electrical 
stimulation is applied while the muscles are engaged. A typical FES session can involve 
electrical stimulation to paralysed muscles during an activity like cycling or rowing. FES can be 
used to improve blood circulation, range of motion, muscle strength, muscle spasticity, fitness 
and may improve capacity to engage in functional activities. FES can be used to stimulate 
muscles or nerves and may be applied on the surface of the skin (transcutaneously) or under 
the skin (percutaneously). FES has been investigated for people who have experienced SCI, 
stroke, traumatic brain injury or who have other neuromuscular conditions such as multiple 
sclerosis (Karamian et al, 2022; van der Scheer et al, 2021; Luo et al, 2020; Marquez-Chin & 
Popovic, 2020). 
The treatment can vary by activity (eg. reaching, grasping, standing, walking etc.), frequency 
and duration of sessions, length of treatment as well as the specific characteristic of the 
electrical pulse including width, frequency and amplitude. Pulse width can be between 300 and 
1000 microseconds (μs). Frequency is usually between 20 and 50 Hertz (Hz). Amplitude can 
vary between 0 and 100 mil iampere (Ma) (Karamian et al, 2022; Luo et al, 2021; Dolbow et al, 
2021). 
3.1  FES Cycle 
Most exercise programs for people with SCI depend on remaining voluntary function of upper 
limbs. However this cannot prevent the progression of muscular atrophy or circulatory 
disorders in the paralysed lower limbs (Kasukawa et al, 2022). Other types of exercise 
programs are also required for people with SCI without voluntary upper limb function (Martin 
Ginis et al, 2018). FES cycling has been used since the 1980s to assist people with SCI to 
exercise their paralysed lower limbs (Kasukawa et al, 2022; Luo et al, 2020). FES cycle 
training utilises a device which delivers electrical impulses to a user’s paralysed muscles, 
enabling them to pedal a motorised cycle machine. Many FES cycle devices are portable and 
can be used in the home (RT300, 2019).  
4.  Guidelines 
Martin Ginis et al (2017) stated in their general exercise guidelines for people with SCI, that 
recommendation around FES training were not possible due to the limited number of high 
quality studies. The authors also note that the panel responsible for developing the guidelines 
determined that recommendations could not be offered for exercise guidelines for people with 
acute SCI. This was the same year that Fehlings et al (2017) published their clinical practice 
guideline for the management of patients with acute SCI. Fehlings et al offer a weak 
recommendation based on low quality evidence for FES to improve hand and upper limb 
 
FES after SCI 
Page 3 of 8  
OFFICIAL 
Page 3 of 8


FOI 24/25-0223 
Research paper 
Document 5
OFFICIAL 
For Internal Use Only 
function for people with acute and subacute cervical SCI. They do not make any 
recommendations regarding use of FES training for lower limb health or function. 
The state of the evidence changed in subsequent years and van der Scheer et al (2021) stated 
their intention to use their systematic review to develop evidence-based clinical practice 
guidelines for FES cycling training. These guidelines are not yet published. 
5.  Efficacy of FES after spinal cord injury 
Several narrative reviews describe evidence the FES training can improve outcomes for 
people with SCI including functional independence, spasticity, muscle health and body 
composition (Atkins et al, 2022; Dolbow et al, 2021; Luo et al, 2020). A more systematic review 
of the evidence shows greater inconsistency in the literature for some outcomes. 
The most comprehensive review of the evidence to date (van der Scheer et al, 2021) found 
with moderate certainty that FES led to improved muscle health for adults with SCI and high 
certainty that FES led to improved muscle health for young to middle-aged adults. While there 
were consistently positive findings among the studies reviewed, the authors found some 
imprecision around effect sizes and limited generalisability for adults over 65 years. Further, 
subjects with high cervical or lumbar lesions were under-represented in the literature so 
conclusions may not generalise for this group. van der Scheer et al also found low certainty 
evidence that FES training improves aerobic fitness and power output of lower limbs. Both 
outcomes showed very serious risk of bias despite a high level of consistency across studies. 
Inconsistent evidence of very low certainty was found for bone health, cardiovascular and 
metabolic factors, fat mass, muscle strength, subjective well-being and functional and 
neurological outcomes. 
Of note, while van der Scheer et al reviewed 92 studies including 999 participants, only two 
studies were RCTs with low risk of bias. Neither of these two studies produced significant 
results. The authors were not able to complete a meta-analysis due to limitations in the 
literature and so they were not able to draw conclusions about optimum dose or pulse 
characteristic required to achieve the observed effects. 
Bekhet et al (2022) investigated the effect of NMES and FES on body composition parametres 
such as muscle mass, cross-sectional area, fat mass, fat-free mass, intramuscular fat, and 
lean mass. They found FES training could assist in muscle growth as measured by cross-
sectional area, lean mass and fat-free mass. The greatest effects could be seen in stimulated 
muscles with little or no change to non-stimulated muscles. Inconclusive evidence was 
obtained for reductions in intramuscular fat and fat mass. In contrast, both Dolbow et al (2021) 
and Atkins et al (2022) suggested FES training could reduce fat mass or intramuscular fat, 
though their review articles are not systematic and did not include a meta-analysis. 
Bekhet et al (2022) were not able to draw conclusion about duration of FES training though 
they suggest twice weekly sessions are more appropriate than training 3 - 5 times per week. 
This frequency: 
 
FES after SCI 
Page 4 of 8  
OFFICIAL 
Page 4 of 8


FOI 24/25-0223 
Research paper 
Document 5
OFFICIAL 
For Internal Use Only 
ensured reasonable recovery time from muscle fatigue after an acute bout of NMES/ 
FES exercise, considering that skeletal muscle in persons with SCI is highly fatigable 
and more susceptible to exercise-induced or delayed onset muscle injury (Bekhet et al, 
2022, p.1175). 
van der Scheer (2021) found minimal evidence to support a reduction of spasticity after FES 
training. However, they did not consider spasticity separately but grouped it with other 
secondary outcomes. Reviews that target spasticity find more consistent evidence that FES 
training can improve spasticity (Bekhet et al, 2019; Fang et al, 2022; Alashram et al, 2022). In 
their meta-analysis, Bekhet et al (2019) found FES training delivered with a pulse frequency of 
20-30Hz can reduce spasticity by 45-60%, though they note lack of evidence that the effect is 
maintained for more than 24 hours after treatment. Fang et al (2021) show improvements in 
spasticity, walking ability and lower limb strength. The authors also support Bekhet et al’s 
conclusion regarding pulse frequency and further show that reduced spasticity can be obtained 
after 20 sessions. However, they also note that evidence does not show that more sessions 
produces a greater effect, suggesting a possible plateau. The sub-group analysis showed the 
effects are present for both complete and incomplete SCIs and that reduction in spasticity was 
greater in people with complete SCIs. Sessions were between 20 and 60 minutes and 
occurred between 2 and 4 times per week. Time since injury was either varied (4 weeks to 17 
years) or not reported. Furthermore, they found that the effects are not simply due to the 
electrical stimulation but the cycling itself also contributed. While Alashram et al (2022) 
supported the efficacy of FES training on reduction of spasticity, they could not draw 
conclusion around frequency or duration of sessions, treatment duration or pulse 
characteristics. Despite significant overlap in the studies included in these three reviews, the 
researchers assess the quality of the included studies differently. Bekhet et al (2019) rate the 
overall quality as moderate to high, whereas Alashram et al (2022) rate the overall quality as 
low. While quality may be an issue, the consistency of the effect on spasticity found in the 
literature should upgrade the strength of the evidence. More specific conclusions around 
dosage should still be read with caution. 
6.  Risks 
According to the review by van der Scheer et al (2021) adverse events were not widely 
reported. Some adverse events were reported in only 21 of the 92 studies. A total of 18 
participants experienced adverse events including hypotension, increased spasticity, light-
headedness, skin redness, bowl accident, autonomic dysreflexia, leg swelling, and 
haematoma. 
Marquez-Chin and Popovic (2020, pp.9-10) list the following clinical considerations which may 
prompt reconsideration of FES training intervention: 
•  Poor skin condition: Pressure injuries (a.k.a. pressure sores) or irritation prevents 
the use of self-adhesive electrodes. 
 
FES after SCI 
Page 5 of 8  
OFFICIAL 
Page 5 of 8


FOI 24/25-0223 
Research paper 
Document 5
OFFICIAL 
For Internal Use Only 
•  Poorly controlled epilepsy: when epilepsy is managed with medication with no 
seizure experienced for a reasonable period, FES can be used. 
•  A history of significant autonomic dysreflexia: autonomic dysreflexia can be present 
in individuals with SCI above the sixth thoracic level (T6). 
•  Pregnancy: the effect of FES on the unborn child is not known in pregnancy. 
•  Cardiac pacemakers: electrical stimulation may interact with the electrical signals 
from pacemakers interfering with their functioning. 
•  Cancerous tumour: patients with a cancerous tumour in the area of the electrical 
stimulation should be excluded as potential tumour growth is a concern with the 
increased local blood flow resulting from the stimulation. 
•  Exposed metal: patients with exposed orthopaedic metal work should not receive 
electrical stimulation in the involved area. 
•  Unhealed fracture: muscle contractions produced by FES around an unhealed 
fracture may result in a displaced fracture. 
•  Suspected, diagnosed, or uncontrolled cardiovascular conditions: the cardiovascular 
demand resulting from the muscle contractions produced by the FES may require 
special attention prior and during delivery of stimulation. 
•  Botulinum toxin: patients on botulinum toxin therapy for their upper limb, a procedure 
for reducing spasms after SCI, or that have received it in the last 6 months prior to 
the use of FES, may not respond to stimulation 
7.  References 
Alashram, A. R., Annino, G., & Mercuri, N. B. (2022). Changes in spasticity following functional 
electrical stimulation cycling in patients with spinal cord injury: A systematic review. The 
Journal of Spinal Cord Medicine
45(1), 10–23. 
https://doi.org/10.1080/10790268.2020.1763713 
Bekhet, A. H., Bochkezanian, V., Saab, I. M., & Gorgey, A. S. (2019). The effects of electrical 
stimulation parameters in managing spasticity after spinal cord injury: A systematic 
review: A systematic review. American Journal of Physical Medicine & Rehabilitation
98(6), 484–499. https://doi.org/10.1097/PHM.0000000000001064 
Bekhet, A. H., Jahan, A. M., Bochkezanian, V., Musselman, K. E., Elsareih, A. A., & Gorgey, 
A. S. (2022). Effects of electrical stimulation training on body composition parameters 
after spinal cord injury: A systematic review. Archives of Physical Medicine and 
Rehabilitation
103(6), 1168–1178. https://doi.org/10.1016/j.apmr.2021.09.004 
 
FES after SCI 
Page 6 of 8  
OFFICIAL 
Page 6 of 8


FOI 24/25-0223 
Research paper 
Document 5
OFFICIAL 
For Internal Use Only 
Dolbow, D. R., Gorgey, A. S., Sutor, T. W., Bochkezanian, V., & Musselman, K. (2021). 
Invasive and non-invasive approaches of electrical stimulation to improve physical 
functioning after spinal cord injury. Journal of Clinical Medicine10(22), 5356. 
https://doi.org/10.3390/jcm10225356 
Fang, C.-Y., Lien, A. S.-Y., Tsai, J.-L., Yang, H.-C., Chan, H.-L., Chen, R.-S., & Chang, Y.-J. 
(2021). The effect and dose-response of functional electrical stimulation cycling training 
on spasticity in individuals with spinal cord injury: A systematic review with meta-
analysis. Frontiers in Physiology12, 756200.https://doi.org/10.3389/fphys.2021.756200 
Fehlings, M. G., Tetreault, L. A., Aarabi, B., Anderson, P., Arnold, P. M., Brodke, D. S., Chiba, 
K., Dettori, J. R., Furlan, J. C., Harrop, J. S., Hawryluk, G., Hol y, L. T., Howley, S., Jeji, 
T., Kalsi-Ryan, S., Kotter, M., Kurpad, S., Kwon, B. K., Marino, R. J., … Burns, A. S. 
(2017). A clinical practice guideline for the management of patients with acute spinal 
cord injury: Recommendations on the type and timing of rehabilitation. Global Spine 
Journal
7(3 Suppl), 231S-238S. https://doi.org/10.1177/2192568217701910 
Karamian, B. A., Siegel, N., Nourie, B., Serruya, M. D., Heary, R. F., Harrop, J. S., & Vaccaro, 
A. R. (2022). The role of electrical stimulation for rehabilitation and regeneration after 
spinal cord injury. Journal of Orthopaedics and Traumatology: Official Journal of the 
Italian Society of Orthopaedics and Traumatology
23(1), 2. 
https://doi.org/10.1186/s10195-021-00623-6 
Kasukawa, Y., Shimada, Y., Kudo, D., Saito, K., Kimura, R., Chida, S., Hatakeyama, K., & 
Miyakoshi, N. (2022). Advanced equipment development and clinical application in 
neurorehabilitation for spinal cord injury: Historical perspectives and future directions. 
Applied Sciences (Basel, Switzerland)12(9), 4532. 
https://doi.org/10.3390/app12094532 
Luo, S., Xu, H., Zuo, Y., Liu, X., & Al , A. H. (2020). A review of functional electrical stimulation 
treatment in spinal cord injury. Neuromolecular Medicine22(4), 447–463. 
https://doi.org/10.1007/s12017-019-08589-9 
Marquez-Chin, C., & Popovic, M. R. (2020). Functional electrical stimulation therapy for 
restoration of motor function after spinal cord injury and stroke: a review. Biomedical 
Engineering Online
19(1), 34. https://doi.org/10.1186/s12938-020-00773-4 
Martin Ginis, K. A., van der Scheer, J. W., Latimer-Cheung, A. E., Barrow, A., Bourne, C., 
Carruthers, P., Bernardi, M., Ditor, D. S., Gaudet, S., de Groot, S., Hayes, K. C., Hicks, 
A. L., Leicht, C. A., Lexel , J., Macaluso, S., Manns, P. J., McBride, C. B., Noonan, V. 
K., Pomerleau, P., … Goosey-Tolfrey, V. L. (2018). Evidence-based scientific exercise 
guidelines for adults with spinal cord injury: an update and a new guideline. Spinal 
Cord
56(4), 308–321. https://doi.org/10.1038/s41393-017-0017-3 
RT300 - iFES neurological rehabilitation. (2019, July 30). Restorative Therapies. 
https://restorative-therapies.com/ifes-systems/rt300/ 
 
FES after SCI 
Page 7 of 8  
OFFICIAL 
Page 7 of 8


FOI 24/25-0223 
Research paper 
Document 5
OFFICIAL 
For Internal Use Only 
van der Scheer, J. W., Goosey-Tolfrey, V. L., Valentino, S. E., Davis, G. M., & Ho, C. H. 
(2021). Functional electrical stimulation cycling exercise after spinal cord injury: a 
systematic review of health and fitness-related outcomes. Journal of Neuroengineering 
and Rehabilitation
18(1), 99. https://doi.org/10.1186/s12984-021-00882-8 
 
FES after SCI 
Page 8 of 8  
OFFICIAL 
Page 8 of 8