

Research Request – Efficacy of Rehabilitation Training Machines

Brief

Efficacy of Rehabilitation Training Machines (Motomed/Active passive trainer/FES Cycling):

- Evidence of use in populations such as SCI, MS, stroke, Parkinson's disease and cerebral palsy

- Evidence of benefits including health outcomes and carryover into functional benefits
- Dosages trialled and recommended
- Any comparisons made to standard treatment regimes

Date 03/06/2020

Requester Maureen Ss47F - personal privacy

Researcher Jane SS47F - personal privacy

Cleared by Jane Ss47F - personal privacy

FOI 24/25-0223 Document 15

Table of Contents

Summary
1. Efficacy of Rehabilitation Training Machines4
1.1 Multiple Sclerosis
1.1.1 MOTOmed and/or Active Passive Trainer4
1.1.2 FES cycling
1.1.3 Conventional Exercise Training Programs5
1.2 Spinal Cord Injury13
1.2.1 MOTOmed and/or Active Passive Trainer13
1.2.2 FES cycling
1.2.3 Conventional Exercise Training Programs14
1.3 Stroke
1.3.1 MOTOmed and/or Active Passive Trainer22
1.3.2 FES cycling
1.4 Parkinson's disease
1.4.1 MOTOmed and/or Active Passive Trainer28
1.4.2 FES cycling
1.5 Cerebral Palsy
1.5.1 MOTOmed and/or Active Passive Trainer32
1.5.2 FES cycling
1.5.3 Conventional Exercise Training Programs
Reference List

Please note:

The research and literature reviews collated by our TAT Research Team are not to be shared external to the Branch. These are for internal TAT use only and are intended to assist our advisors with their reasonable and necessary decision making.

Delegates have access to a wide variety of comprehensive guidance material. If Delegates require further information on access or planning matters they are to call the TAPS line for advice.

Summary

MOTOmed and/or Active Passive Trainer

-Quality of research is generally of medium-high quality across stroke, SCI, Parkinson's disease and cerebral palsy. Although, many studies conclude that further research is needed which included larger controlled samples and utilise consistent outcomes measures and interventions.

-Results vary between conditions as different outcome measures are used, however, there is evidence to suggest that these rehabilitation trainers can increase cardiovascular, musculoskeletal and neurological outcomes.

- Long term health and functional related outcomes were rarely reported. The longest intervention duration reported was 12 weeks

- Dosages vary significantly. On average, studies investigated interventions which lasted 20-30 minutes, 2-3 times a week

-Refer to individual disorders for separate research on MOTOmed and/or Active Passive Trainers

-Very few studies investigated the devices in a home setting

FES cycling

-Quality of research into FES cycling for multiple sclerosis and cerebral palsy was low to very low. There is a paucity of evidence looking at FES cycling for those with Parkinson's disease with only a single subject design study discovered. Stork and spinal cord injury had greater – quality research evidence ranging from medium to high.

-Research from all diseases showed mixed results across cardiorespiratory and functional performance, as well as musculoskeletal and psychological outcomes. For example, some studies found reduced spasticity in those with SCI and others did not. See individual diseases for exact findings.

-Differences in the duration and effort of intervention, as well as outcome measures used led to significant heterogeneity and inability to directly compare results within and between diseases

- Significant variation in dosages ranging from 10-90 minutes, 2-7 times per week over 2 to 24 weeks.

- Long term health and functional related outcomes were rarely reported. The longest intervention duration reported was 24 weeks.

-Very few studies investigated the devices in a home setting

Where possible, conventional exercise training programs are also provided if a systematic review existed on the topic. This allows for some comparison to regular physical therapy interventions that are currently delivered to these cohorts of patients.

1. Efficacy of Rehabilitation Training Machines

1.1 Multiple Sclerosis

1.1.1 MOTOmed and/or Active Passive Trainer

A single randomised controlled trial (RCT) [1] has investigated the effectiveness of a neurophysiotherapy programme based on feedback cycling for improving gait in patients with multiple sclerosis (MS) using a **MOTOmed device**.

This study included 61 patients with mild to moderate MS. Half performed <u>one 30 minute</u> <u>session per week for three months</u> using the MOTOmed Viva2 Movement Trainer in addition to a personalised exercise program to be completed at home. The control group only received the personalised at home exercise program.

No significant differences in walking speed or cadence (steps per minute) between groups. Intervention group showed statistically significant improvements in Functional Ambulatory Performance (FAP) across all time intervals. Stride length significantly improved in the intervention group across all time intervals and between baseline and final measurement in the control group.

Quality = Medium

- Results suggest that visual biofeedback cycling training may be a viable. However, larger studies are required with different treatment intervals to determine efficacy

An RCT by Barclay et al. (2019) [2] evaluated the feasibility of a progressive, four week lower limb cycling programme using **active passive trainers (APT's)** on spasticity, cardiovascular fitness, function and quality of life in people with moderate to severe MS.

- Intervention group

 <u>30 min of APT cycling (2 min passive warm up, 26 min active cycling and 2 min passive cool down)</u>
 <u>20 sessions (5 days per week for four weeks in addition to usual care)</u>
- <u>Control group</u> -Individualised therapy programme, delivered Monday to Friday
- Performed in a clinical setting

<u>Results</u>

- Average power output, distance cycled and speed improved in the intervention group but this did not translate to statistical changes in the outcome measures.
- Improvements were shown across both groups for <u>physical health and mental</u> <u>health.</u> Effect Size = 0.93 intervention and 0.46 control
- <u>Cardiovascular health</u> = Medium effect size in intervention (0.36) compared to control group (0.07)

Quality = Medium

- Small sample size and intervention group also underwent usual care so difficult to separate effect of the intervention.

1.1.2 FES cycling

Two systematic reviews [3, 4] examining the outcomes of people with MS with mobility impairment following Functional Electrical Stimulation (FES) cycling have been conducted.

Both reviews found that intervention duration ranged from <u>10-60 minutes</u>, <u>2-3 times per</u> week over 2 to 24 weeks. The majority were performed in clinical settings (89%). Stimulation parameters for most trials involved a pulse width of 200–300 μ sec at a frequency of 20–50 Hz and a cycling cadence of 10–50 rpm. All stimulated the quadriceps, hamstrings, and gluteal muscle groups, with the exception of one trial.

- **Cardiorespiratory performance** (VO2 max, peak aerobic capacity, peak work rate, power generation) = <u>No improvement</u>
- **Functional performance** (2-min walk test, 25-foot walk test, 10m walk test or 12 item MS walking scale) = <u>No significant improvement</u>
- Musculoskeletal outcomes = <u>No improvement</u> in lower body strength (knee and hip parameters) or long term improvements in spasticity

 Significant reduction in spasticity directly post FES
- **Psychological outcomes =** No improvement in Quality of Life (QOL) or mental health scores
 - High levels of participant satisfaction
- Adverse events = 10 adverse events reported across studies including skin irritation, increased spasticity, bowel dysfunction and fatigue

Quality – Low

These reviews included studies of low quality (pre-post studies with no control group, retrospective and case studies) and a single RCT which didn't perform blinding or achieve a sufficient sample size which introduces bias and limits generalisability. <u>This precludes any</u> definitive conclusions regarding the efficacy of FES cycling for MS.

1.1.3 Conventional Exercise Training Programs

Two systematic reviews examining the benefits of 'exercise training' in patients with MS have been conducted.

1) Latimer-Cheung et al. (2013) [5] investigated patients with mild-moderate MS and performed a meta-analysis and combined the below interventions;

- -Ergometer
- -Technogym equipment
- -Resistance training with simultaneous electrostimulation
- -Static bike
- -Plyometric exercises
- -Walking
- -Balancing
- -Stretching
- -Swimming

-Treadmill -Calisthenics -Yoga -Therabands

<u>Results</u>

-Consistent and strong evidence that aerobic and resistance exercise performed <u>2 times per</u> week at a moderate intensity increases physical capacity and muscular strength, respectively.

- Evidence supporting the benefits of exercise on mobility and fatigue is promising, there <u>is</u> <u>insufficient evidence to definitively establish the prescriptive amounts, intensities, or types</u> <u>of exercise to improve these outcomes.</u>

-Not enough good-quality evidence to date supporting the benefits of exercise for improving Health related QOL outcomes.

-No evidence that FES cycling is effective for increasing strength.

Quality – High

Inclusion of high quality RCTs (29/54). Consistent finding and ability to perform a metaanalysis shows homogeneity in outcome measures

2) Edwards et al. (2017) [6] investigated studies which included participants with severe MS (severe mobility issues). The number of studies were limited compared to those which investigate mild-moderate MS.

<u>Results</u>

Mixed results across all outcomes for all treatment types

- **Conventional exercise training:** no statistically significant improvements in any of the outcomes
- **Conventional resistance exercise training** -Significant improvements in muscular strength, muscle endurance, balance, fatigue symptoms, and QOL when combined with neuromuscular electrical stimulation
- Bodyweight support treadmill training

 Mixed results (some positive others no change) across outcomes on level of disability, knee extensor strength, walking, endurance, walking speed, gait kinematics, balance and agility, fatigue, QOL
- Total body recumbent stepper training (one study) -No change in disability or physical function reported. Fatigue significantly reduced after the intervention.

Quality – Medium

Significant heterogeneity led to **inability to perform meta-analysis.** Further research is necessary to determine the most efficacious and effective exercise approaches for individuals with MS with severe mobility disability due to the limited amount of quality evidence

Table 1					
Author (year) and	Study aim	Method/participants characteristics	Treatment/Intervention/ Setting	Outcome/summary	Quality of evidence
country					High
Multiple Scle	erosis	I			Ŭ
Hochspung	To analyse the	RCT (double-blind)	-During the study period,	No significant differences in walking speed or	Medium
otal	effectiveness of a		none of the participants	cadence were observed between stages in any	
(2017) [1]	neuro-physiotherapy	61 patients with mild	received other types of	of the groups	-Lack of follow-up and
(2017)[1]	programme based	to moderate MS	physiotherapy.		the small size prevent
	on feedback cycling			Functional Ambulatory Performance (FAP)	generalisation of
	for improving gait in	Inclusion criteria: (1)	Intervention group	 intervention group showed statistically 	results.
	patients with MS.	referral by	 stationary bicycle with a 	significant changes between stages 0 and 1 (P <	
		neurologist	coordination feedback	.014) and between stages 0 and 2 (<i>P</i> < .002)	-Significant
		(2) diagnosis of	programme to work on lower	 no such differences were observed in the 	improvements
		definite MS	limb strength asymmetry	control group	only in FAP and stride
		according to the	using 75% of the maximum		length
		McDonald criteria at	resistance	Stride length	
		least 2 years	- one 30-minute session per	 significant differences in stride length 	-12 sessions not enough
		previously;	week for 3 months using the	between stages 0 and 2 (P < .001) and between	for long term results
		(3) EDSS score	MOTOmed Viva2 Movement	stages 1 and 2 (<i>P</i> < .002)	
		between 2 and 6	Trainer	- controls only displayed significant differences	-Results show that
		(4) age between 20	 personalised exercise 	in stride length between stages 0 and 2 (P <	visual biofeedback
		and 70 years; (5)	programme to be completed	.004)	cycling training
		clinical stability	at home		may be a viable,
		during the 3 months			effective treatment in
		previous to	Control group		patients with MS but
		recruitment; (6) no	 personalised exercise 		larger studies are
		cognitive impairment	programme to be completed		required.
		according to the	at home		

		Mini-Mental State			
		Examination			
Barclay et	To evaluate the	Randomised Trial	Clinic setting	15 intervention and 9 control	Medium
al. (2019)	feasibility of a				
[2]	progressive, four	not powered to show	APT group (intervention) : - 30	-Improvements were noted in the majority of	-Small sample
	week lower limb	statistically	min of APT cycling (2 min	outcome measures, although no statistically	-Very few clinical or
	cycling programme using active passive	significant changes	passive warm up, 26 min active cycling and 2 min	significant group differences were found.	significant effects -Intervention group also
	trainers (APT's) on	Inclusion:	passive cool down)	-The average power output, distance cycled	underwent usual care
	spasticity,	(a) Confirmed	-20 sessions (Five days per	and speed improved in the intervention	so difficult to separate
	cardiovascular	diagnosis of MS, (b)	week for four weeks in	group but this did not translate to statistical	effects of the
	fitness, function and	aged over 18, (c)	addition to usual care)	changes in the outcome measures.	intervention from the
	quality of life in	expanded Disability			intensive therapy
	people with	Status Scale (EDSS) of	Usual care:	-lack of objective change in spasticity	
	moderate to severe	between 6.0 and 8.5.	Individualised therapy		
	MS.		programme, delivered	-Improved walking speed in 7/16 participants in	
		Exclusion:	Monday to Friday, and could	the intervention group compared to 2 in the	
		(a) Significant	include PT, OT, SLT and	control	
		cognitive	Psychology.		
		impairment, (b) co-		Improvements were shown across both	
		morbidities which		physical health (PH) and mental health (MH). ES	
		would preclude them		= 0.93 intervention and 0.46 control	
		taking part in			
		exercise, (c) visual		Medium effect in intervention (0.36) for	
		Impairment, (d)		cardiovascular health and negligible (0.07) for	
		unable to be seated		control	
		appropriately in a			
		wheelchair for 30			
		min.			
Scally et al.	To systematically	Systematic Review	Intervention duration ranged	Cardiorespiratory performance	Low
(2020) [3]	examine the		between 2 and 24 weeks		
	outcomes of people	(1) human		Functional performance	Low quality (study
	with MS with	participants with	8 studies in clinic setting	-No significant changes in 2-min walk test, 25-	design and sample
	mobility impairment	definite diagnosis of	1 in home	foot walk test, 10m walk test or 12 item MS	sizes) of the literature
		MS		walking scale	base precludes any

	following FES cycling	(2) aged 18 years and	Average 2-3 sessions per		definitive conclusions
	intervention.	over	week	Musculoskeletal outcomes	regarding the efficacy of
		(3) average EDSS 6.0		-No improvement in lower body strength (knee	FES cycle training in
		or above, or an	Min 10-60 minutes per	and hip parameters)	improving
		equivalent mobility	session	- Significant reduction in spasticity directly post	cardiovascular health in
		impairment		FES	MS and higher EDSS
		(4) evaluate FES		- No long term improvements in spasticity	scores.
		cycling as an			
		intervention study		Psychological outcomes	RCT's did not blind
				-No improvement in QOL or mental health	participants or
		5 pre-post studies		scores	providers and not
		with no control			sufficient power to
		group, 2 randomised		Adverse events	detect a difference.
		controlled trials		10 adverse events reported across studies	
		(RCTs), 1		including skin irritation, increased spasticity,	FES cycle training
		retrospective study		bowel dysfunction and fatigue	appears to be well
		and 1 case study.			tolerated in MS with
					mobility impairment,
					with no serious adverse
					events.
Pilutti et al.	Summary of the	Systematic Review	Intervention	Safety and tolerability	Low
(2019) [4]	current evidence for			-Preliminary evidence supports the safety and	
	FES cycling as an	Acute and chronic	-Durations ranged between 2	tolerability of FES cycling exercise	limited but promising
	exercise training	FES cycling as an	and 24 weeks		evidence for the
	modality in persons	exercise modality in		Acute effects	application of FES
	with IVIS	persons with IVIS	-Sessions delivered 2–3×/	-Studies support the potential for modification	cycling exercise among
		Q in aluada atualia a	week for between 10 and 60	OT	persons with IVIS who
		8 included studies,	min/session.	muscle spasticity, cycling kinematics, and	nave moderate-to-
		ONLY I KCI	Stimulation parameters for	single sessions of EES cycling	severe disability.
		Samplos woro small	most trials involved a pulse	Acute henefits may with chronic exposure to	High quality PCTs of FES
		(n - 1 - 1/1)	width of 200–300 u sec at a	EFS cycling, result in long-term adaptations	cycling evercise are now
		(11 - 1 14)	frequency of $20-50$ Hz and a		needed to establish the
		narticinants had	cycling cadence of 10–50 rpm	Chronic effects	safety and efficacy of
			-All stimulated the	- potential for strength adaptations with	this promising modality
			quadricens hamstrings and		

		Moderate-to-severe disability (EDSS range reported = 4.0–7.5).	gluteal muscle groups, with the exception of one trial	FES cycling likely depends on the specific muscle groups that are peripherally Stimulated - changes in body composition in response to FES cycling exercise in persons with MS are unclear - no effect of FES cycling delivered between 2 and 24 weeks on spasticity -No improvements in QOL -High levels of participant satisfaction	for people living with MS
Latimer- Cheung et al. (2013) [5]	To conduct a systematic review of evidence surrounding the effects of exercise training on physical fitness, mobility, fatigue, and Health related quality of life in adults with multiple sclerosis (MS).	Systematic Review Both randomised and non-randomised studies included (29 high level RCT) Diagnosis of MS (mild-moderate) Focus on: fitness, mobility, fatigue or health related quality of life benefits	Clinic and Home -Ergometer -Technogym equipment -Resistance training with simultaneous electrostimulation -Static bike -Plyometric exercises -Walking -Balancing -Stretching -Stretching -Swimming -Treadmill -Calisthenics -Yoga -Therabands	54 included studies There was consistent and strong evidence that aerobic and resistance exercise performed 2 times per week at a moderate intensity increases physical capacity and muscular strength, respectively. While the evidence supporting the benefits of exercise on mobility and fatigue is promising, there is insufficient evidence to definitively establish the prescriptive amounts, intensities, or types of exercise to improve these outcomes. There is not enough good-quality evidence to date supporting the benefits of exercise for improving HRQOL outcomes. There is no evidence that electrical stimulation-assisted cycling is effective for <u>increasing strength.</u>	High -More than half of included studies were RCTs of moderate-high quality
Edwards et al. (2017) [6]	Provide a summary of the potential benefits of exercise training in persons with MS with severe	Systematic Review randomized and nonrandomized controlled trials, and	conventional exercise training (aerobic and resistance exercise) (n= 5)	Further research is necessary to determine the most efficacious and effective exercise approaches for individuals with MS with severe mobility disability due to the limited amount of quality evidence.	Medium -Small samples

mobility disability.	pre-post intervention	body-weight support		-Mixed results across all
and a future	designs	treadmill training (BWSTT) (n=	Conventional exercise training	outcomes for all
research agenda for	0.00.0.10	7)	- no statistically significant improvements in	treatment types
developing effective	Diagnosis of MS	,,	any of the outcomes	-Significant
stratogies for	(covoro mobility	total body requimbent stepper	any of the outcomes	bataraganaity lad to
strategies ion	(Severe mobility	total-body recumbent stepper	Conventional resistance eventies training	inchility to porform
	issues	training (TBRST) $(T = 1)$	Conventional resistance exercise training	mability to perform
through exercise			-Significant improvements in muscular	meta-analysis
training.		Functional clectrical	strength, muscle endurance, balance, fatigue	
		stimulation assisted cycling (n	symptoms, and QOL when combined with	
		= 5)	neuromuscular electrical stimulation	
			-Low level evidence	
			Bodyweight support treadmill training	
			-Mixed results (some positive others no	
			change) across outcomes on level of disability,	
			knee extensor strength, walking, endurance,	
			walking speed, gait kinematics, balance and	
			agility, fatigue, QOL	
			Total body recumbent stepper training (one	
			study)	
			No change in disability or physical function	
			roported	
			reported.	
			-Symptoms of fatigue were significantly	
			reduced after the intervention	
			Electrical stimulation assisted cycling	
			(functional electrical stimulation (FES) and	
			neuromuscular electrical stimulation (NMFS)	
			cycling)	
			- Two studies reported significant	
			improvements in physical fitness assessed as	
			thigh circumference and muscle oxygen	
			consumption (mVO2)	
			-No significant improvements in physical	
			function	

		-Mixed evidence for the effects of ESAC on spasticity, walking speed, and other	
		participatory outcomes	

1.2 Spinal Cord Injury

1.2.1 MOTOmed and/or Active Passive Trainer

Phadke et al. (2019) [7] performed a systematic review to assess the effectiveness of **passive leg** cycling interventions on cardiovascular, neuromuscular, and musculoskeletal outcomes post spinal cord injury (SCI).

Devices utilised in included studies: Ergo-Dom, FNS leg cycle, ERGYS 1 leg cycle, Sevodynamically controlled recumbent ergometer and MOTOmed cycle.

Intervention duration Single intervention: 5 to 100 minutes per session

<u>Multiple sessions</u> - frequency of the exercise sessions ranged from one to three times per day, 20 to 90 minutes per session, 2 to 6 days per week, and 6 to 12 weeks total duration

Results

-Two included RCTs reported significant benefits of multiple sessions of passive cycling on **cardiovascular** (improved leg blood flow velocity), **musculoskeletal** (improved joint range of motion and markers of muscle hypertrophy), and **neurological** outcomes (improved spasticity and reflex excitability)

-No clear picture emerged with single session studies, with about half the studies showing a statistically significant improvement in acute responses in **cardiovascular** (blood flow velocity) and **neurological** outcomes (short interval intra-cortical inhibition and spasticity), while the rest reported no change.

Quality – Medium

Only 11 included studies of which only 2 were RCT. More evidence is required to understand the best parameters for single and multiple sessions of passive cycling.

1.2.2 FES cycling

Multiple literature and systematic reviews have been conducted relating to FES cycling as a treatment for patients with spinal cord injury (SCI) [8-11]. Two were of higher quality and will be summarised here [8, 9]. The remaining two were low quality narrative/literature reviews [10, 11] and can be found in Table 2.

- 1) Alashram et al. (2020) [8] investigated the effects of the FES-cycling on the lower extremities spasticity in patients with SCI and found:
- Significant reduction in Modified Ashworth Scale (assess muscle tone and level of spasticity) and Numerical-Rating-Scale spasticity scores (reduce spasticity) after FEScycling post-treatment, and at three and six months follow ups (P < 0.05).
- Intervention details were not reported in some of the selected studies so unable to identify the treatment effect size and the effective treatment protocol

Quality – Medium

Several low quality studies included due to the paucity of evidence. Small sample sizes and heterogeneity of studies meant a meta-analysis was not conducted.

2) Thomaz et al. (2019) [9] evaluated the effect of electrical stimulation (ES) on skeletal muscle volume and spasticity in individuals with SCI, however, only results for FES cycling were retrieved.

- Intervention: 30-45 minutes, 3-4x per week

- Overall effect on muscle volume was statistically significant in patients with acute SCI (mean difference: 0.86; 95% CI: 0.04 to 1.69; p < 0.04).

- Non-significant (mean difference: 0.55; 95% CI: -0.31 to 1.41; p = 0.21) effect for spasticity of the lower limb.

Quality – High

High quality RCTs

1.2.3 Conventional Exercise Training Programs

Hicks et al. (2011) [12] conducted a systematic review of evidence surrounding the effects of exercise on physical fitness in people with SCI. Broad range of study types included covering resistance training, arm ergometry, wheelchair exercise and FES, step training and strength training.

<u>Intervention</u>: All studies performed the desired intervention 2-5x a week, over a range of 5-12 weeks (one study performed over 26 weeks)

<u>Results</u>

Overall, Exercise is effective in increasing physical capacity and muscular strength among people with chronic SCI. There is no evidence to suggest that exercise is harmful to this population.

See Table 2 for outcomes on Power Output, Aerobic capacity, Muscle strength, Body weight, Muscle mass Wheelchair propulsion and skills, Walking and Standing across intervention types

Quality – Medium

Inclusion of very low quality (level 5) studies may impact results. Although results were relatively consistent across studies.

Table 2	Table 2					
Author (year) and country	Study aim	Method/ participants characteristics	Treatment/ Intervention/ Setting	Outcome/summary	Quality of evidence Low/Medium /High	
Spinal Cord	Injury	1			, .	
Phadke et al. (2019). [7]	To assess the effectiveness of passive leg cycling interventions on cardiovascular, neuromuscular, and musculoskeleta I outcomes post SCI, and to describe intensity, duration, and type of passive leg cycling post SCI	Systematic Review Inclusion: passive leg cycling prospectively in adult participants (age ≥18 years) with SCI 11 included studies (2 RCT, 1 cross- over trial, 8 pre- post)	Cycling training parametersSingle intervention: 5 to 100 minutes per sessionMultiple sessions - frequency of the exercise sessions ranged from one to three times per day, 20 to 90 minutes per session, 2 to 6 days per week, and 6 to 12 weeks total duration.Devices used Ergo-Dom, FNS leg cycle, ERGYS 1 leg cycle, Sevo- dynamically controlled recumbent ergometer,	Outcome measures used to assess the effects of cycling -Two RCTs reported significant benefits of multiple sessions of passive cycling on cardiovascular (improved leg blood flow velocity), musculoskeletal (improved joint range of motion and markers of muscle hypertrophy), and neurological outcomes (improved spasticity and reflex excitability) -No clear picture emerged with single session studies, with about half the studies showing a statistically significant improvement in acute responses in cardiovascular (blood flow velocity) and neurological outcomes (short interval intra-cortical inhibition and spasticity), while the rest reported no change. -The studies reviewed here showed a diversity of cycling protocols and outcomes across multiple body systems.	Medium Evidence from this systematic review indicates that multiple sessions of passive leg cycling showed some form of beneficial changes across cardiovascular, musculoskeletal, and neurological systems -More evidence is required to understand the best parameters for single and multiple sessions of passive cycling.	

			Motomed cycle		
			. ·		
			Comparisons		
			No intervention,		
			FES cycling, resting,		
			Active + FES cycling,		
Alashram	to investigate	Systematic	See note on	The selected studies demonstrated a significant	Medium
	the effects of	Review	intervention details	reduction in the Modified Ashworth Scale (assess muscle tone and level of	Wedium
(2020) [0]	the EFS-cycling	Neview	in the vention details	spacticity) and Numerical-Pating-Scale spacticity scores (reduce spacticity)	-2 high quality
(2020)[9]	on the lower	- individuals	outcome/summary	after EES-cycling post-treatment, and at three and six months follow ups	-2 mgn quanty
	extremities	with	section	(P > 0.05)	remaining were
	spasticity in	sci	Section	(1 < 0.05).	low-quality and
	nationts with	-evamined		-Comparison study found significant reduction in the spacticity in the	included due to
	SCI	lower		experimental EES-cycling group (P = 0.02) than in the standard care control	the naucity of
	501.	extremities			studies
		snasticity		Proch.	nublished about
		spustienty.		-One reported AF relating to an increase in spasticity and a howel accident	this issue
		2 randomised		one reported the relating to an increase in spasticity and a bower decident	this issue.
		cross-over trials		-Intervention details were not reported in some	-Small samples
		6 pilot studies		of the selected studies such as: frequency of treatment treatment time	official sumples
		2 cohort studies		period session duration number of electrodes pulse type of FFS-	- Heterogeneity
				cycling system, pulse width, frequency, and RPM. So unable to identify the	of studies meant
		161 total		treatment effect size and the effective treatment protocol.	a meta-analysis
		participants			was not
		participanto			conducted.
Thomaz et	Evaluate the	Systematic	Treatment (relating	ES is effective at promoting a discrete, but significant increase in skeletal	High
al. (2019)	effect of	Review and	to FES cycling	muscle volume in patients with SCI with a subsequent reduction in atrophy	-
[9]	electrical	Meta-Analysis	studies)	and an effect on muscle volume that is similar in patients with complete	studies included
	stimulation (ES)			and incomplete injuries.	in this meta-
	on skeletal	Only RCT	30 minutes 3x per		analysis were
	muscle volume	included	week	-ES on muscle volume of the lower limbs, the overall effect was statistically	homogeneous
	and spasticity			significant in patients with acute SCI (mean difference: 0.86; 95% CI: 0.04 to	and evaluated a
	in individuals	Patients with	30-45 minutes 4x	1.69; p < 0.04).	respectable
	with	SCI	per week		number of
					participants

	spinal cord injury	Intervention = ES Comparison = other intervention or no intervention 7 included studies		-ES for spasticity of the lower limb, the overall effect was non-significant (mean difference: 0.55; 95% CI: –0.31 to 1.41; p = 0.21).	
Deley et al. (2015) [10]	To discuss some evidence- based physiological and methodological considerations for optimal use of FES for training in paraplegia. Particular attention is given to the comparison of the different FES methods	Narrative Review Poor search strategy (only PubMed and Google Scholar) Study types included are not reported All in clinical setting	Unclear duration, dosage etc	 FES allows the participation of greater muscle mass through hybrid exercises (FES-cycling associated with arms ergometer or FES-rowing). These different forms of exercise are associated with major benefits to all systems of the body—muscular, cardiovascular and pulmonary—and induce important training adaptations when used regularly. FES appears to be a beneficial and safe method for training in paraplegic individuals FES rowing appears to provide the greatest outcomes 	Low -Lack of methodological explanation of studies included -Narrative review and no quantitative analysis -Poor outcome reporting or intervention
Mayson et al. (2014) [11]	To review the evidence on FES cycling intervention in youth with SCI	Literature Review <21 years with SCI 6 included studies	Interventions included FES cycling, Passive leg cycling and ES only 5 studies performed 1 hour sessions 3x/ week for 6 months	FES cycling is safe for youth with SCI Based on RCT: FES cycling can positively influence VO2, as well as quadriceps muscle strength and Volume. However, ES alone may be more beneficial in reducing cholesterol levels and increasing thigh muscle volume	Low Due to the limited number of intervention publications, five of which involved the

		-4 RCT (one study spread across 4 publications) -1 case series -1 prospective	1 study 30 minutes sessions 3x/ week for 9 months FES cycling		same small sample, it is impossible to recommend optimal parameters for
		Total 40	-Applied to: quadriceps,		in children and adolescents with
		participants	hamstrings, gluteal muscles -Frequency: 33 Hz -Pulse duration: 150, 200, 250 or 300 µs -Amplitude: <140 mA -Resistance adjusted by 0.14 nm to maintain 50 rpm		SCI.
Hicks et al.	To conduct a	Systematic Boview	Include at least one	Power Output	Medium
(2011)[12]	review of	NEVIEW	measures below:	-Level 1 and 4 studies have shown the combination	Exercise is
	evidence	Physical activity	-strength, oxygen	of resistance and aerobic training to improve	effective in
	surrounding	or exercise	uptake/consumptio	power output of the upper limbs.	increasing
	the effects of	training	n, power output,	-Benefits when performed 2-3x per week over 12 weeks	physical capacity
	exercise on	intervention in	peak work capacity,		and muscular
	physical fitness	persons	body composition,	Wheelchair exercise:	strength among
	in people with	diagnosed with	exercise	This single level 4 study showed non-significant	people with
	spinal cord	an SCI	performance or	improvements in upper limb power output.	chronic SCI.
	injury (SCI).	(paraplegia or	functional	A - un his sourceite	Thomas in me
		tetraplegia).	performance.		i nere is no
				Arm ergometry exercise:	evidence to

	69 included studies	-All level 4 studies, arm ergometry has been	suggest that
Case studies,	on chronic SCI	shown to be very effective in improving aerobic capacity.	exercise is
experimental		-3x per week showed benefits after 5 weeks	harmful to this
and quasi			population.
experimental		Wheelchair ergometry exercise:	
designs were		-Level 4 and 5 studies. Most show improvements in aerobic capacity	
included.		following 3x per week training for as little as 4 weeks.	
		Combined resistance and arm ergometry exercise:	
		-Level 4 trials produced conflicting results; two studies (one level 4 study,	
		and the RCT) showed significant improvement in aerobic capacity following	
		training 3x per week for 7 and 12 weeks, while the other (level 4 study)	
		showed no improvement following 3x per week training for 6 weeks.	
		Resistance training exercise:	
		-Although resistance training is not traditionally	
		used to improve aerobic capacity, a single level 4 study	
		yielded significant improvements in aerobic	
		capacity. Further, the magnitude of improvement	
		was comparable to that seen in most other exercise	
		studies.	
		Functional electrical stimulation:	
		- In these level 4 and 5 studies, FES exercise has shown to be very effective	
		in improving aerobic capacity in as little as 4–6 weeks.	
		-Exercise schedule 2-3x per week is sufficient for improvement.	
		Muscle strength	
		Combined resistance and arm ergometry exercise:	
		- Level 4, pre-post training studies consistently show	
		that participation in any form of exercise training that 'overloads' the	
		muscle will result in increases in muscle strength.	
		-Training frequencies of 3x per week, the level 1	
		RCT demonstrated significant improvements in	
		muscle strength with a frequency of 2x per week.	
		-Training intensities ranged between 50–80% 1RM.	

		Functional electrical stimulation:	
		 -Level 4, pre-post training studies utilizing FES show 	
		that muscle strength can significantly increase in	
		the paralyzed muscles	
		-3x per week over 8 weeks of training	
		-There is level 1 evidence that FES-assisted arm ergometry training is more	
		effective in improving tricens strength than arm ergometry alone	
		Body weight	
		Resistance and aerobic exercise:	
		All of these level 4 studies reported non-significant	
		increases or decreases in body weight and utilized	
		a training frequency of 3 per week with an	
		intensity ranging from 40 to 80% max. HR.	
		,	
		Functional electrical stimulation	
		-Level 4 studies reported non-significant increases or decreases in body	
		weight.	
		-Frequency of training was 3-5x per week.	
		Muscle mass	
		Resistance exercise	
		-One level 4 study of vibration exercise reported	
		significant increases in fat free mass with training	
		-5x per week for 12 weeks	
		-No other significant changes in lean tissue mass were reported.	
		Functional electrical stimulation:	
		A level 2 study reported significant increases in	
		quadriceps cross-sectional area with a treadmill	
		training frequency of 2x per week for 26 weeks.	
		Wheelchair propulsion and skills	
		Resistance and aerobic exercise:	

1.3 Stroke

1.3.1 MOTOmed and/or Active Passive Trainer

1) A systematic review investigating the effectiveness of the MOTOmed trainer was performed by Shen et al. (2018) [13]. All included studies were RCTs and a total of 1099 participants were recruited.

Intervention duration

- 20 minutes in 11 studies
- 30 minutes in 6 studies
- 40 minutes in 1
- Unclear in 1 study
- Average 1-2 times per day and 5-7 days per week
- Over 4 to 12 weeks

All studies compared conventional rehabilitation to MotoMed + conventional rehabilitation.

<u>Results</u>

- MOTOmed movement therapy effectively improves mobility and activities of daily living in stroke patients with hemiplegia.

- Fugl-Meyer Assessment (assess motor functioning, balance, sensation and joint functioning) Z = 7.33, P < 0.0001

-Modified Ashworth Scale (muscle tone) Z = 9.19, P < 0.00001

-Berg Balance Scale Z = 8.39, P < 0.00001

- Functional Ambulation Category Z = 9.61, P < 0.00001
- -10m walk test Z = 4.49, P < 0.00001
- -Barthel Index (activities of daily living) Z = 15.6, P < 0.00001

Quality – High

Consistent findings across all included RCTs

2) A narrative literature review of the efficacy and safety of passive exercise interventions was conducted by Brenner (2018) [14]. **C**ontinuous Passive Motion (CPM) and Motorized-cycle ergometers were reviewed.

<u>Results</u>

CPM exercise

-Can significantly reduce physiological symptoms such as oedema, muscle stiffness and/or spasticity.

-Shoulder joint stability can be increased following $\frac{4 \text{ weeks of training, 5 \times /week/ 25 min}}{\text{per session}}$ (plus warm-up and cool-down)

Motorised-cycle ergometers

-Duration of training programs ranged from <u>3 to 5 weeks</u>

-Improvements in motor control, trunk stability and cognition were reported following this type of passive exercise training

-Regular passive arm exercise led to an increase in the range of motion in the affected arm

- No standard protocols or best practice guidelines exist for either modality in stroke

Quality – Low

Small number of included studies of moderate-low quality. <u>More information is required</u> on the type of device, the frequency and duration of each exercise session as well as the intensity and how long the therapy should be continued (i.e., length of treatment).

1.3.2 FES cycling

1) A high quality systematic review by Shariat et al. (2019) [15] has investigated the effectiveness of different protocols of cycling with/without FES on functional mobility after stroke.

Intervention: Cycling with/without FES to the lower limbs

- Frequency: 1 to 7 sessions per week
- Session length: 10 to 90 minutes
- Duration of interventions: 3 to 16 weeks (for cycling alone 3–72 weeks and for
- cycling with FES about 4 weeks)
- -Total dose of the stimulation: between 4 and 16 hours.

<u>Comparison</u>: cycling alone, cycling with FES, control, placebo, or other interventions <u>Outcomes</u>: Balance, walking speed, mobility <u>Study design</u>: All included studies were RCTs

Results

- Walking speed: Effect size (ES) 0.30 (95% CI, 0.05 0.55) P < 0.02
- Walking ability: ES 0.41 (95% CI, 0.11 0.71) P < 0.007
- Cycling vs control on balance: ES 0.32; 95% Cl, 0.06 0.57, P < 0.01
- Cycling with FES vs control on balance: ES 1.48; 95% CI, 0.99 –1.97, *P* < 0.00001

Quality – High

-Cycling with FES has a significant and positive effect on balance compared to cycling without FES

-Additional studies are needed comparing FES cycling directly with other modalities of exercise such as balance training, strength training, power training or combinations to determine its relative efficacy

-No outcomes for functional mobility such as falls and fall-related injuries

2) An additional RCT comparing a standard rehabilitation program to MOTOmed cycle + FES and found that the intervention and control group both improved on all outcome measures, however, the intervention group had significantly less shoulder pain. Full summary of the study by Karaahmet et al. (2018) [16] can be found in Table 3.

Table 3					
Author	Study aim	Method/participants	Treatment/Intervention/S	Outcome/summary	Quality of evidence
(year) and		characteristics	etting		
country					Low/Medium/High
Stroke					
	1	1	1	1	1
Shen et al.	To estimate the	Systematic Review	Duration of MotoMed	The main finding of this systematic review	High
(2018) [13]	effectiveness of		therapy:	and meta-analysis is that MOTOmed	
	MOTOmed®	Only RCTs included (all	- 20 minutes in 11 studies	movement therapy effectively improves	Inclusion of only
	movement therapy	performed in China)	- 30 minutes in 6 studies	mobility and activities of daily living in stroke	RCTs. Consistent
	in increasing		- 40 minutes in 1	patients with hemiplegia.	findings across all
	mobility and	19 Trials including 1099	- Unclear in 1 study		
	activities of daily	patients		Significant effects in favour of Motomed for:	
	living in stroke		- 1-2 times per day and 5-7	- Fugl-Meyer Assessment (assess motor	
	patients with	Stroke with hemiplegia	days per week	functioning, balance, sensation and joint	
	hemiplegia.		- Lasting 4 to 12 weeks	functioning) $Z = 7.33, P < 0.0001$	
		Age range 46.5-83.4			
			All studies compared	-Modified Ashworth Scale (muscle tone) Z =	
			conventional	9.19, <i>P</i> < 0.00001	
			renabilitation to MotoMed		
			+ conventional	-Berg Balance Scale $2 = 8.39$, $P < 0.00001$	
			Tenabilitation	- Functional Ambulation Category $7 = 9.61 P$	
				< 0.00001	
				0.00001	
				-10m walk test Z = 4.49, P < 0.00001	
				-Barthel Index (activities of daily living) Z =	
				15.6, <i>P</i> < 0.00001	
Brenner	To investigate the	Literature Review	See results/outcomes	CPM exercise	Low
(2018) [14]	efficacy and safety			-Can significantly reduce physiological	
	of passive exercise	1. Continuous Passive Motion		symptoms such as oedema, muscle stiffness	Non-systematic
	interventions for	(CPM)		and/or spasticity.	search strategy.

	patients with hemiplegia with a focus on those interventions that could be used in the home setting	2. Motorized-cycle ergometers		-Shoulder joint stability can be increased following 4 weeks of training, 5 × /week/ 25 min per session (plus warm-up and cool- down)	Small number of included studies of moderate-low quality
	nome setting			Motorised-cycle ergometers -Two studies investigated passive leg-cycle and one on arm ergometer exercise on functional measures -Duration of training programs ranged from 3 to 5 weeks -Improvements in motor control, trunk stability and cognition were reported following this type of passive exercise training -Regular passive arm exercise led to an increase in the range of motion in the affected arm No adverse effects were reported in the literature, can perform at home - No standard protocols or best practice guidelines exist for either modality in stroke	More information is required on the type of device, the frequency and duration of each exercise session as well as the intensity and how long the therapy should be continued (i.e., length of treatment).
Shariat et al. (2019) [15]	To quantify the effectiveness of different protocols of cycling with/without functional electrical stimulation on functional mobility after stroke.	 Systematic Review 1. Participants: Human subjects post-stroke (Adults ≥18 within 5 years after stroke). 2. Intervention: Cycling with/without functional electrical stimulation (FES) to the lower limbs 3. Comparison: cycling alone, cycling with FES, 	Frequency: 1 to 7 sessions per week Session length: 10 to 90 minutes Duration of interventions: 3 to 16 weeks (for cycling alone 3–72 weeks and for cycling with FES about 4 weeks)	Walking speed: ES 0.30 (95% CI, 0.05 – 0.55) P <0.02 Walking ability: ES 0.41 (95% CI, 0.11 – 0.71) P <0.007 Cycling vs control on balance: ES 0.32; 95% CI, 0.06 – 0.57, P <0.01 Cycling with FES vs control on balance: ES 1.48; 95% CI, 0.99 –1.97, P < 0.00001	High -Literature suggests that more studies are needed comparing FES cycling directly with other modalities of exercise such as balance training, strength training,

		control, placebo, or other interventions 4. Outcomes: Balance, walking speed, mobility 5. Study design: Randomized clinical trial 14 trials including 680 participants who completed final follow up	Total dose of the stimulation between 4 and 16 hours. -Electrical stimulation varied across studies as the frequency ranged from 20 to 60 Hz and pulse width from 300 to 450 ms.	Long term effects and the most effective protocols are unclear due to study heterogeneity	power training or combinations, to determine its relative efficacy -Cycling is superior to control for improving walking speed, walking ability, and balance.
		Mean age 42.5 to 85 years	control intervention - 10 studies used sham stimulation - 4 studies participants received no stimulation		-Cycling with FES has a significant and positive effect on balance compared to cycling without FES.
					-Although more research is needed, patients post stroke with lower limb disability could use cycling with FES as part of their rehabilitation program.
					-No outcomes for functional mobility such as falls and fall- related injuries
Karaahmet et al. (2018) [16]	To determine the effects of FES-cycling on shoulder pain and	RCT	-Both groups were trained with a standard rehabilitation program	The only significant finding was that severity of shoulder pain decreased in the FES-cycling group compared to the control	Medium

subluxation, and secondarily to evaluate the improvement of upper extremity motor function in patients with acute–subacute stroke	 -Age between 18 and 80 years, -First stroke Exclusion: sensory aphasia, recurrent stroke or bilateral hemiplegia, vasomotor instability, lower motor neuron disorder, limitation/ instability/dislocation of the shoulder joints, severe spasticity, and uncontrolled epilepsy 21 participants (12 intervention, 9 control) 	(range of motion, stretching and strengthening exercises) program -5x a week lasting 30 min each -20 sessions <u>Intervention group</u> - Motomed cycle- ergometer used - Surface electrodes applied to anterior and the posterior deltoid, biceps, and triceps muscles - Pulse width of 300 μs and a stimulation frequency of 20 Hz - 5-min warm-up of passive cycling, a 15-min training of FES-cycling, and a 5-min cool-down of passive cycling	All other measures improved significantly between baseline and post-test for both intervention and control groups	Insufficient sample size to observe the effects of FES training
		passive cycling		

1.4 Parkinson's disease

1.4.1 MOTOmed and/or Active Passive Trainer

A literature review summarising the state of the evidence of **forced exercise's** impact on individuals with Parkinson's disease (PD) has been conducted by Miner et al (2020) [17]. Included studies utilised MOTOmed, Theracycle or a Tandem Bike.

Intervention

- On average, the intervention was delivered;

- 3 times per week
- 5-10 minute warm up at an average pedalling rate of 40-50 rpm
- 30-40 minute forced exercise session (average 80-90 rpm)
- 5-10 minute cool down
- Over 8-12 weeks

<u>Results</u>

Acute effects

- Forced exercise has the potential to cause similar therapeutic effects as antiparkinsonian medication to improve motor symptoms of PD.

- Last for up to 48hr

Effects on motor function

-Best when used to treat rigidity, bradykinesia, and tremor

Physical fitness

-Muscular strength improved by>30% in the upper and lower body (only one study)

Mobility performance

-difficult to draw conclusions on the effects of forced exercise on mobility performance in individuals with PD as most of the results were confounded by a ceiling effect in the outcome measures selected

Incorporating forced exercise as an adjunctive treatment could provide significant added benefit to task specific training, or gait and balance training for individuals with PD.

Clinical recommendations summary comparing Tandem cycling to MotoMed (or equivalent) can be found in Figure 1.

Quality – Moderate

- Various methodological flaws which limit the generalizability

-longer term follow-up studies with larger sample sizes are needed to inform the ability of forced exercise to alter the trajectory of PD

1.4.2 FES cycling

There is a paucity of research in this area. Findings from a single subject design study [18] can be found in Table 4. No conclusions can be drawn from the findings provided.

Table 4					
Author	Study aim	Method/participants	Treatment/Intervention	Outcome/summary	Quality of evidence
(year) and		characteristics	/Setting		
country					Low/Medium/High
Parkinson's	Disease				
al.(2020) [17]	state of the evidence of forced exercise's impact on individuals with PD and to determine the utility of this intervention in the clinical decision	Unclear what the search methodology was for this review. No methods section Single subject, RCT, quasi-experimental	 3 times per week 5-10 minute warm up at an average pedalling rate of 40-50 rpm 30-40 minute forced exercise session (average 80-90 rpm) 5-10 minute cool down 	cycling to MotoMed (or equivalent) can be found in Figure 1 below) Incorporating forced exercise as an adjunctive treatment could provide significant added benefit to task specific training, or gait and balance training for individuals with PD.	-Small numbers of patients - Include studies had various methodological flaws which limit the generalizability
	making for this patient population.	MOTOmed Theracycle Tandem Bike	-Duration 8-12 weeks	Acute effects -Forced exercise has the potential to cause similar therapeutic effects as antiparkinsonian medication to improve motor symptoms of PD. -Last for up to 48hr Effects on motor function -highlights the importance of individuals being actively engaged in the exercise intervention -Best when used to treat rigidity, bradykinesia, and tremor Physical fitness -Muscular strength improved by>30% in the upper and lower body (only one study)	-longer term follow- up studies with larger sample sizes are needed to inform the ability of forced exercise to alter the trajectory of disease progression related to motor function

				Mobility performance -difficult to draw conclusions on the effects of forced exercise on mobility performance in individuals with PD as most of the results were confounded by a ceiling effect in the outcome measures selected	
Bellman et al. (2016) [18]	provides the results of an experiment conducted with one subject with PD to establish feasibility of FES-assisted cycling in this population	Case study Four able-bodied male subjects 25–27 years old were recruited from the University of Florida, and one male subject with PD, 60 years old, with a modified Hoehn and Yahr disability score of 2.5	Device -stationary, recumbent exercise cycle (AudioRider R400, NordicTrack) Stimulation -Frequency was fixed at 60 Hz Gluteal, quadriceps femoris, and hamstrings muscle groups stimulated	Results suggest that FES-assisted cycling using the developed switched controller may improve the ability of people with PD to track a desired cadence	Very Low Only one participant with PD. Only outcome measure is cadence Significant additional testing beyond the scope of this paper is needed to determine clinical efficacy.

Clinical recommendations and summary.

	Tandem cycling	MOTOmed or comparable model
Warm-up (minutes)	5 (40-50 RPM)	5 (40-50 RPM)
Forced Exercise Session (minutes)	30-40 (80-90 RPM or 30% above voluntary rate; 60-80% target HR)	30-40 (80-90 RPM or 30% above voluntary rate; 60-80% target HR)
Cool-down (minutes)	5-10 (40-50 RPM)	5-10 (40-50 RPM)
Frequency (x per week)	3-5 (at least 3)	3-5 (at least 3)
Duration (of entire treatment)	12 weeks; Re-Evaluate Every 6 Months	12 weeks; Re-Evaluate Every 6 Months
Pros	Temporal variability of pedal cadence of tandem cycling may provide more	Ease of access to the bike; patient can sit in a chair in front of the
	afferent drive to improve motor output.	bicycle and there is no need to mount and dismount.
	Trainer on tandem bicycle can give patient encouragement, social, emotional support which may improve effort, compliance, adherence to exercise	Increased Safety
	program	No trainer necessary
	No significant differences in improvements between tandem forced cycling and motorized forced cycling	Could potentially be performed in the home setting
		No significant differences in improvements between tandem forced
Cons	Safety- Patients with impaired balance may find it difficult to mount and dismount bicycle	Expensive
	•	Lack of partner involvement via a trainer may cause decreased
	Trainer must be available to ride the bike and change gears	patient motivation/effort, compliance, adherence to exercise program
	Investment in bike and bike stand are expensive, but less so than MOTOmed	

1.5 Cerebral Palsy

1.5.1 MOTOmed and/or Active Passive Trainer

A single high quality, well powered RCT has been conducted by Damiano et al. (2017) [19]. The aim was to quantify and compare the effectiveness of a motor-assisted cycle (MOTOmed) and a novel alternative (elliptical), in cerebral palsy (CP) to improve inter-limb reciprocal coordination.

Intervention

Devices were randomised to participants and <u>delivered to their homes</u> -Instructed to exercise above 40 rpm for 20 minutes, 5 days a week for 12 weeks.

<u>Results</u>

-Device cadence at self-selected and fast speeds for all participants improved markedly and significantly as a result of training

-No significant changes were seen in gait speed for time or group, nor did parent-reported functional mobility

-Knee extensor strength increased in both

Quality – Medium

Single study but excellent sample size with positive findings. Training dose provided likely insufficient for maximum results.

1.5.2 FES cycling

Several case studies and pilot work has been conducted on the feasibility and benefits of FES cycling in CP [20-22].

Intervention

- Duration: most commonly used 30 minutes at a time for 3 times a week
- FES applied to the bilateral quadriceps and/or hamstrings
- One delivered intervention in the participants home [22]

Results

- Positive results for Modified Ashworth scale (MAS), cadence, power output, and heart rates, quadriceps and hamstring strength, Timed "Up & Go".
- Participants were able to tolerate the application of FES and complete testing

Quality – Low to Very Low

No control groups. Very small sample (total of 5 participants).

1.5.3 Conventional Exercise Training Programs

The impact of resistance training on the motor functions of children with CP has been investigated in a systematic review and meta-analysis by Collado-Garrido et al (2019) [23].

FOI 24/25-0223 Document 15

Outcome measures

- Gross Motor Function Measure
- Lateral Step Up
- Time Up and Go
- Mobility Questionnaire

<u>Results</u>

- Large effect of 0.75 (95% CI 0.41-1.08) for duration ≤6 weeks compared to 7-12 weeks
- Large effect of 1.08 (95% CI = 0.52 to 1.64) when duration was less than 30 minutes compared to 30-60 minutes and 60-90 minutes
- Large effect for fewer than three days a week. 1.59 (95% CI = 0.67 to 2.50), compared to studies with sessions applied three days a week
- Larger effect when using the "functional exercises" protocol. 1.25 (95% CI = 0.46 to 2.04)

Quality – High

Majority RCT of high quality. Statistically significant positive effect on motor function in favour of the use of resistance therapy in weakened musculature in children with CP

Table 5	Table 5						
Author (year) and country	Study aim	Method/ participants characteristics	Treatment/ Intervention/ Setting	Outcome/summary	Quality of evidence Low/Medium /High		
Cerebral Pals	5y	I		1	, ,		
Damiano et al. (2017) [19]	To quantify and compare effectiveness of a motor-assisted cycle and a novel alternative, an elliptical, in CP to improve inter-limb reciprocal coordination through intensive speed-focused leg training.	RCT 27 children with bilateral spastic CP, and a mean age of 10.3 years Reached power MOTOMed Elliptical	assigned device was delivered to their home, and they were instructed to exercise above 40 rpm for 20 minutes, 5 days a week for 12 weeks. Each participant was tested 3 times at 3-month	Device cadence at self-selected and fast speeds for all participants, improved markedly and significantly as a result of training No significant changes were seen in gait speed for time or group, nor did parent-reported functional mobility Knee extensor strength increased in both	Medium Single study Positive across both groups Training dose is insufficient		
Peng et al. (2010) [20]	Review FES cycling system; the therapeutic benefits of FESCE in subjects with SCI; clinical efficacy of FES in subjects with stroke; a pilot study of FESCE in subjects with cerebral palsy Will only review CP case	Case study 3 children with quadriplegic CP (mean age 3 years)	-FES sequentially applied to the bilateral quadriceps and hamstrings to achieve a rhythmic pedaling motion. -30 minutes, 3x per week -Exercise protocol based on the muscle status of their lower limbs	-Preliminary results showed all measured MAS scores decreased after FES cycling	Very low The results implied that FES cycling might acutely alleviate spastic conditions of children with CP.		

			-Gradual increase in load -Modified Ashworth scale (MAS), leg drop pendulum test, and myotonometric measurements were conducted pre and post-test		
Harrington et al. (2012) [21]	to adapt methods and assess the feasibility of applying FES cycling technology in adolescents with CP, determine methods of performing cycling tests in adolescents with CP, and evaluate the immediate effects of FES assistance on cycling performance.	Pilot study four participants (2 male) with spastic CP between the ages of 12–14 years (mean 13 ± 1.2 years) tricycle-based system (a sport tricycle (KMXKarts; United Kingdom) mounted on a cycle trainer	-Bilateral quadriceps muscles were stimulated during the limb extension phase of the cycling -2–4 sessions with at least 24 hours of rest between cycling sessions and with all testing occurring within a two-week period for each participant -Target for the constant load test was set at 80% of the peak power output	 -All participants were able to tolerate the application of FES and complete testing -FES-assisted cycling resulted in increased cadence, power output, and heart rates and decreased variability in cycling performance compared with volitional cycling without FES assistance. 	Low

Johnston et	describes the effects	Mixed methods	-Cycled with FES at	-Quadriceps muscle strength improved by 22.2%	Very low
al. (2011) [22]	of cycling with FES (FES cycling) in an adult	case report	home for 30 minutes, 3 times per week, for 12	-Hamstring muscle strength improved by 18.5%,	Single case study
	with CP.	man with spastic diplegic	weeks	-Timed "Up & Go" Test time decreased from 11.9 to 9.0 seconds	Patient made gains in body
		СР	Volitional efforts were augmented	-Patient reported increased performance and satisfaction for self- identified goals and his score on the Medical Outcomes Study 36-Item	structure and function, activity,
			by FES of the bilateral	Health Survey questionnaire increased from 62.1 to 77.6.	and participation
			quadriceps,	-Reported increased back pain	
			gluteal muscles.		
			Tested 4 weeks		
	- 1 11 1	<u> </u>	after withdrawai		
Collado-	To analyse, through	Systematic	"progressive	Intervention duration	Hign
Garrido et	a meta-analysis of	Review and	strength training	-Large effect of 0.75 (95% CI 0.41-1.08) for duration ≤ 6 weeks	statistically
al. (2019)	published primary	ivieta-Analysis	functional	compared to 7-12 weeks	statistically
[23]	studies, the impact	Controllad	training	Large effect of 1.09 (05% CI = 0.52 to 1.64) when duration was less	significant
Related to	on the parameters	(randomized or	training	-Large effect of 1.06 (95% Cl $=$ 0.52 to 1.04) when duration was less	positive effect off
resistance	of the motor		static hicycle	than 50 minutes compared to 50-00 minutes and 60-90 minutes	in favour of the
training but	function in children	randomized)	Static Dicycle	-1 arge effect for fewer than three days a week 1.59 (95% CI = 0.67 to	use of resistance
not specific	with CP	and non-	outcome measure	250 compared to studies with sessions applied three days a week	therany in
to	With Ci	controlled	-Gross Motor	2.50), compared to studies with sessions applied three days a week	weakened
Motomed		clinical trials	Function Measure	-larger effect when using the "functional exercises" protocol with an	musculature in
APT. FES			- Lateral Step Up	SMD of 1.25 (95% CI = 0.46 to 2.04)	children with CP
cycling etc.		Intervention	-Time Up and Go		
, 0		based on	-Mobility		
		resistance	Questionnaire		
		therapy			
		School-aged CP			
		patients (≤18			
		years)			

12 RCT and 3		
non-		
randomised clinical trials		
electrostimulati		
on as resistance		
therapy		

Reference List

- 1. Hochsprung A, Domínguez AG, Magni E, Uribe SE, García AM. Effect of visual biofeedback cycling training on gait in patients with multiple sclerosis. Neurología (English Edition). 2019 Apr 8.
- 2. Barclay A, Paul L, MacFarlane N, McFadyen AK. The effect of cycling using activepassive trainers on spasticity, cardiovascular fitness, function and quality of life in people with moderate to severe Multiple Sclerosis (MS); a feasibility study. Multiple sclerosis and related disorders. 2019 Sep 1;34:128-34.
- Scally JB, Baker JS, Rankin J, Renfrew L, Sculthorpe N. Evaluating functional electrical stimulation (FES) cycling on cardiovascular, musculoskeletal and functional outcomes in adults with multiple sclerosis and mobility impairment: A systematic review. Multiple sclerosis and related disorders. 2020 Jan 1;37:101485.
- 4. Pilutti LA, Motl RW. Functional Electrical Stimulation Cycling Exercise for People with Multiple Sclerosis. Current treatment options in neurology. 2019 Nov 1;21(11):54.
- Latimer-Cheung AE, Pilutti LA, Hicks AL, Ginis KA, Fenuta AM, MacKibbon KA, Motl RW. Effects of exercise training on fitness, mobility, fatigue, and health-related quality of life among adults with multiple sclerosis: a systematic review to inform guideline development. Archives of physical medicine and rehabilitation. 2013 Sep 1;94(9):1800-28.
- 6. Edwards T, Pilutti LA. The effect of exercise training in adults with multiple sclerosis with severe mobility disability: a systematic review and future research directions. Multiple sclerosis and related disorders. 2017 Aug 1;16:31-9.
- 7. Pilutti LA, Motl RW. Functional Electrical Stimulation Cycling Exercise for People with Multiple Sclerosis. Current treatment options in neurology. 2019 Nov 1;21(11):54.
- 8. Alashram AR, Annino G, Mercuri NB. Changes in spasticity following functional electrical stimulation cycling in patients with spinal cord injury: A systematic review. The Journal of Spinal Cord Medicine. 2020 May 15:1-4.
- Thomaz SR, Cipriano Jr G, Formiga MF, Fachin-Martins E, Cipriano GF, Martins WR, Cahalin LP. Effect of electrical stimulation on muscle atrophy and spasticity in patients with spinal cord injury–a systematic review with meta-analysis. Spinal cord. 2019 Apr;57(4):258-66.
- 10. Deley G, Denuziller J, Babault N. Functional electrical stimulation: cardiorespiratory adaptations and applications for training in paraplegia. Sports Medicine. 2015 Jan 1;45(1):71-82.
- Mayson TA, Harris SR. Functional electrical stimulation cycling in youth with spinal cord injury: A review of intervention studies. The journal of spinal cord medicine. 2014 May 1;37(3):266-77.
- Hicks AL, Ginis KM, Pelletier CA, Ditor DS, Foulon B, Wolfe DL. The effects of exercise training on physical capacity, strength, body composition and functional performance among adults with spinal cord injury: a systematic review. Spinal cord. 2011 Nov;49(11):1103-27.

- Shen C, Liu F, Yao L, Li Z, Qiu L, Fang S. Effects of MOTOmed movement therapy on the mobility and activities of daily living of stroke patients with hemiplegia: a systematic review and meta-analysis. Clinical rehabilitation. 2018 Dec;32(12):1569-80.
- 14. Brenner I. Effects of Passive Exercise Training in Hemiplegic Stroke Patients: A Mini-Review. Sports Med Rehabil J. 2018; 3 (3). 2018;1036.
- Shariat A, Najafabadi MG, Ansari NN, Cleland JA, Singh MA, Memari AH, Honarpishe R, Hakakzadeh A, Ghaffari MS, Naghdi S. The effects of cycling with and without functional electrical stimulation on lower limb dysfunction in patients post-stroke: a systematic review with meta-analysis. NeuroRehabilitation. 2019 Jan 1;44(3):389-412.
- Karaahmet OZ, Gurcay E, Unal ZK, Cankurtaran D, Cakci A. Effects of functional electrical stimulation-cycling on shoulder pain and subluxation in patients with acute–subacute stroke: a pilot study. International Journal of Rehabilitation Research. 2019 Mar 1;42(1):36-40.
- Miner DG, Aron A, DiSalvo E. Therapeutic effects of forced exercise cycling in individuals with Parkinson's disease. Journal of the Neurological Sciences. 2020 Jan 9:116677.
- Bellman MJ, Cheng TH, Downey RJ, Hass CJ, Dixon WE. Switched control of cadence during stationary cycling induced by functional electrical stimulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2015 Nov 13;24(12):1373-83.
- Damiano DL, Stanley CJ, Ohlrich L, Alter KE. Task-specific and functional effects of speed-focused elliptical or motor-assisted cycle training in children with bilateral cerebral palsy: randomized clinical trial. Neurorehabilitation and neural repair. 2017 Aug;31(8):736-45.
- 20. Peng CW, Chen SC, Lai CH, Chen CJ, Chen CC, Mizrahi J, Handa Y. Clinical benefits of functional electrical stimulation cycling exercise for subjects with central neurological impairments. J. Med. Biol. Eng.. 2011 Jan 1;31(1):1-1.
- 21. Harrington AT, McRae CG, Lee SC. Evaluation of functional electrical stimulation to assist cycling in four adolescents with spastic cerebral palsy. International journal of pediatrics. 2012 May 22;2012.
- 22. Johnston TE, Wainwright SF. Cycling with functional electrical stimulation in an adult with spastic diplegic cerebral palsy. Physical Therapy. 2011 Jun 1;91(6):970-82.
- Collado-Garrido L, Parás-Bravo P, Calvo-Martín P, Santibáñez-Margüello M. Impact of Resistance Therapy on Motor Function in Children with Cerebral Palsy: A Systematic Review and Meta-Analysis. International journal of environmental research and public health. 2019 Jan;16(22):4513.